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A Grid-Free Approach for Plasma Simulations
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July 10, 2007

This report summarizes work done between January 1, 2005 and December 31, 2006. The
original award was made to the University of Michigan (UM) and the duration was three
years, ending December 31, 2007. Dr. Christlieb was the original PI, but when he moved
to Michigan State University (MSU) in August 2006, the contracting offices at AFOSR and
the universities determined that several modifications were needed. As a result, Dr. Krasny
became the PI of the award, and since his portion of the funding ended in December 2006,
the award duration was changed to two years, ending December 31, 2006. The change in
the expiration date requires that a final report be written for the UM award and the present
document serves that purpose. The remaining funds were transferred to a new one-year
award at MSU with Dr. Christlieb as PI, ending December 31, 2007. Hence the present final
report corresponds to the first two years of the original three-year award period. Another
final report will be written for the MSU award, ending December 31, 2007.

1 Objectives

The project aims to develop a new grid-free approach for plasma simulations. The specific
tasks are to: (1) develop a grid-free field solver, fluid model, and kinetic model, (2) evaluate
these tools in comparison with traditional mesh-based methods, and (3) demonstrate the
capability of the grid-free approach in an application of USAF interest.0 Most plasma simulations are currently performed using mesh-based methods or the hybrid

O particle-in-cell (PIC) method [1, 2]. The alternative grid-free approach developed here has
cm the potential to vastly improve the accuracy and efficiency of these simulations. To achieve

this objective the investigators are applying several numerical techniques used in the studyQ) of vortex dynamics in fluids [3]. These techniques include (1) discretization of the flow
O map by Lagrangian particles, (2) application of a Cartesian multipole treecode to accelerate

the evaluation of electrostatic forces induced by a set of charged particles, (3) regularizing
Ithe Coulomb potential, (4) adaptive particle insertion to resolve small scale features in theO particle distribution, and (5) application of boundary integral techniques to impose boundary

conditions on solid boundaries.

0 *Department of Mathematics - University of Michigan

tDepartment of Mathematics - Michigan State University
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2" Status of Effort

As mentioned above, the p)resent report represents the first two years of the original award
period, up to December 31, 2006. During that period, the investigators made substantial
progress in developing the Boundary Integral/Treecode (BIT) approach. In particular, the
research effort focused on several topics: (1) collisionless plasmas, (2) two stream instability,
(3) crystal formation in trapped particle systems, (4) collisional plasmas, and (5) numerical
heating in PIV vs. BIT. The key results are described below.

3 Accomplishments/New Findings

The following sections highlight several computations showing the feasibility and excellent
performance of the grid-free approach. The method holds promise for a variety of challenging
AF and civilian applications in plasma science and technology.

3.1 Collisionless Plasmas

The Vlasov-Poisson system describes a collisionless plasma,
Fjat fj + v3. VfJ ÷-K.vf -0 (1)
Mj

Vx (x,t) _ p(x,t) (2)

p(x, 0 qj/f3 ((x,v,t)dv , Fy = -qjV1, (3)

where fj (x, v, t) is the probability density for a particle of species j to be located at position
x with velocity v at time t, 4) is the electrostatic potential, qj is the charge on species j, mj
is the mass of a particle of species j, p is the total charge density, fo is the permittivity of
free space, and Fj is the force acting on species j.

One well-accepted approach is to discretizing equation (1) uses a Lagrangian framework
in which f(x, v, t) is represented as a collection of macro-particles evolving in phase space
by Newton's equations,

Fj
:kj vi Vi=--, i=l N. (4)

Mi

For the electrostatic problem in this case, the inter-particle force has the form,

N

Fi = qiEk,i. (5)
k=O
kOý

Particle-in-cell (PIC) is a well known method for evaluating Fj in O(N log N) operations
using a fixed regular mesh and a fast Poisson solver [2]. However, PIC suffers from a host of
mesh-based effects that can significantly degrade the quality of the solution. These include
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numerical heating, difficulty with complex domains, and problems resolving internal and
boundary layers [1].

The alternative approach developed here couples a Lagrangian description of the Vlasov
equation (1) with an efficient grid-free field solver for the Poisson equation (2). The grid-free
field solver employs a boundary integral method and a treecode algorithm to evaluate the
field in time O(NlogN). The basic procedure is to cast the Poisson equation (2) as an
integral equation, using Green's theorem, and to then discretize the resulting volume and
surface integrals in such a way as to make the system equivalent to a sum over N charged
particles. The flow map is used to change variables and rewrite the volume integral as an
integral over a set of Lagrangian parameters. Accuracy is maintained by inserting new phase
space particles using interpolation with respect to the Lagrangian variables. Initial timing
results show that for high accuracy (less than a 1% error in Fl), the BIT approach is superior
to a mesh-based PIC method.

We applied the BIT approach to several plasma problems that exhibit complex dynamics.
Two examples are the two stream instability in neutral plasmas and crystal formation of a
single charged species confined in a Penning-Malmberg trap. These examples are described
next.

3.2 Two Stream Instability

The two stream instability resembles a Kelvin-Helmholtz instability in phase space. The
basic premise is that given a neutral plasma with two electron streams flowing in opposite
directions, in the presence of a slight perturbation, the streams interact in a nonlinear way
so as to roll up in phase space. The resulting vortices represent the trapping of electrons in
a phase space volume.

Figure 1 shows the evolution of the phase space instability using the BIT approach. Pe-
riodic boundary conditions in space are imposed in this test case. It is worth noting that the
method maintains symmetry on very long time-scales whereas mesh-based methods typically
lose symmetry quickly due to interpolation errors [2]. Furthermore, the BIT solution differs
substantially from the behavior seen in PIC simulations, e.g. the phase space distribution
does not approach a Gaussian as predicted and accepted by the PIC community. We expect
BIT to display different behavior from PIC because we are able to maintain much higher
accuracy. Currently we are studying the behavior of solutions with initial finite temperature
distributions. The work on the warm two stream instability has involved the development of
volumetric point insertion using a bilinear interpolant, which extends our previous approach
in which particles were inserted along curves. These simulations were done in collabora-
tion with a talented undergraduate, Benjamin Sonday, who is now a graduate student at
Princeton University with a DOE Computational Science Graduate Fellowship. Details of
volumetric point insertion will appear in a forthcoming article.

3.3 Crystal Formation in Trapped Particle Systems

A Penning-Malmberg trap is a strongly magnetized plasma in which perturbations in the
magnetic field due to the flowing plasma can be neglected [4]. The trap is a grounded
evacuated metal cylinder with a large magnetic field in the axial direction, which provides
ra(dial confinement via the Lorenz force, and end cap potentials serve to contain a single
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Figure 1: Two stream instability. Plot of particle distribution in phase space. left: t = 0,
center: t = 2.5, right: t = 3.3. This simulation used adaptive point insertion to
maintain resolution as the particle beams roll up.

charged species. The system has a large separation of time scales and can be reduced to the
following 2D description, as long as the system is collisionless,

-V()x B
Otn, + Ve" Vxne ---0 , V x BII , (6)

where n. is the electron density in the trap, B is the magnetic field, (D is the solution to the
Poisson equation (2) with (D = 0 on the domain boundary, and the flow is in the xy-plane.
Using the grid-free BIT method with point insertion, we have studied crystal formation
in this system. Figure 2 shows a comparison between experiment and simulation. The
setup is seven dense patches of electrons placed in a large diffuse background. The process
of crystal formation in this system is a dynamic process which depends on an interplay
between the background and the strong patches. Numerical studies have shown that without
the background, the system will not crystalize. Furthermore, the system exhibits sensitive
dependence on initial conditions. The simulations show that slight changes in the density
ratio and radius of the initial dots greatly alter the critical time scales in the system as
well as the structure of the crystalline state. For initial conditions consistent with the
experiment, the simulations are in good agreement with the experimental data, as shown in
Figure 2. Related grid-free results can be found in [5 7]. We plan to continue this work by
implementing volumetric point insertion in our Penning trap code.

3.4 Collisional Plasmas

To account for collisions, the right hand side of equation (1) becomes

f = (f(v')f(v,) - f(v)f(v.)) 'oa dQ dv0 , (7)

where T is the relative velocity between two particles, a is the scattering cross section and
dQ is the differential solid angle through which particles scatter. The two product terms in
the parentheses represent a source and loss of particles which scatter into and out of a given
velocity element through collisional events. This convolution integral over velocity space is
expensive to compute and one common approach to reducing the cost is to use Monte Carlo
techniques [8].

In this work we have developed an innovative grid-free approach to Monte Carlo methods
for gas dynamics problems. Again, we model f as a collection of macro particles in phase
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Figure 2: Crystal formation in a Penning-Malmberg trap. From left to right, the panels
are in order of increasing time. The top row is experimental data taken at the
University of California San Diego [4]. The second and third rows are two methods
of visualizing the same BIT simulation results. Row two is a visualization of the
actual Lagrangian points and row three uses a weighting to a mesh which is
similar to the experimental data analysis procedure.

space. The evolution of the new equation (1) is carried out using operator splitting in time,
i.e. we evolve the macro-particles which describe the transport of f through phase space
and then correct the resulting distribution functions for collisional events using a Monte
Carlo method. It has been shown that this method converges to the solution of the modified
equation (1) as the particle number goes to infinity [9]. Novel aspects in this work are
that particles are clustered adaptively using octrecs at each time step and that macro flow
quantities are tracked and updated in the nodes of the tree using grid-free interpolation.

The method has been applied to several benchmark problems such as Couette flow,
thermal Couette flow, and flow past a lifting body. In addition, we have applied the method
to study the formation of a Bose-Einstein condensate. This work is done in collaboration
with a PhD student, Spencer Olson. An article is being prepared for submission.

3.5 Numerical Heating in PIC vs. BIT

The focus in this work is on the simulation of high density plasmas, as in laser-plasma
interactions. In this case, PIC simulations exhibit numerical heating when using compu-
tationally feasible mesh sizes. We show how this artifact can be reduced with a different
choice of time-integration scheme. The main conclusions of the study may be summarized
as follows. In both BIT and PIC, numerical heating can be reduced by employing implicit
Euler (IE) time integration. In the PIC scheme using standard leap-frog (LF) time stepping,
the solution appears converged with respect to the time step, but on switching to IE, further
substantial improvements are achieved. BIT and PIC perform equally well using IE or LF,
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when PIC uses a very fine mesh, but BIT does even better as the time step is reduced.
Since BIT does not employ a mesh, it does better than PIC when PIC uses a coarse mesh.
In a situation with too few particles in the Debye sphere, PIC-LF code can do better than
BIT-LF due to the spatial filtering induced by the mesh, but BIT-IE is more accurate (with
lower numerical heating) than PIC-IE. We reiterate that the importance of this study is the
implication for dense laser-plasma problems. This work was carried out by Dr. Christlieb as
part of an NRC-AFOSR summer faculty fellowship at AFRL Edwards in collaboration with
Dr. Jean-Luc Cambier.

4 Personnel Supported

Andrew Christlieb and Robert Krasny were the faculty members who led the research effort.
In addition, several other personnel were associated with the work. Benjamin Sonday was an
undergraduate who assisted in the coding of the particle method. Mr. Sonday is currently
a graduate student at Princeton University with support from a Department of Energy
Computational Science Graduate Fellowship. Spencer Olson was a PhD student who worked
on grid-less DSMC. Lyudmyla Barannyk was a postdoc who assisted in the linear stability
analysis of the Lagrangian form of the Vlasov-Poisson system. Dr. Barannyk is starting a
tenure-track assistant professor position at the University of Idaho in August, 2007.

5 Publications

Christlieb, A.J.; Krasny, R.; Verboncoeur, J.P.; Emhoff, J.W., Boyd, I.D. (2006) Grid-free
plasma simulation techniques, IEEE Transactions on Plasma Science 34, 149-165.

This article was an invited paper in connection with the invited talk by Dr. Christlieb
at the IEEE International Conference on Plasma Science in 2005. The article is attached to
this document.

The investigators are preparing several other articles for publication. The current draft
titles are listed below. The papers will be sent to the program manager, Major David Byers,
upon completion.

Christlieb, A.J.; Olson, S.E.; Gridless DSMC, in preparation.

Christlieb, A.J.; Olson, S.E.; Application of gridless DSMC to the formation of Bose-Einstein
condensates in novel atomic traps, in preparation.

Christlieb, A.J.; Methods for reducing numerical heating in PIC simulations, in preparation.

Sonday, B.; Barannyk, L.; Christlieb, A.J.; Krasny, R.; A Lagrangian particle method for
electrostatic plasmas, in preparation.

6 Interactions/Transitions

a. Participation/presentations at meetings, conferences, seminars, etc.

* Michigan State University, February, 2005
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"* Naval Research Laboratory, Washington DC, April, 2005

"• University of Maryland, April, 2005

"* SIAM Conference on Dynamical Systems, May, 2005

"• IEEE International Conference on Plasma Science, June, 2005

"* American Physical Society, Division of Plasma Physics, October, 2005

"* University of Wisconsin, November, 2005

"* Oklahoma State University, February, 2006

"* University of Texas-Arlington, February, 2006

"• AFRL-Kirtland, February, 2006

"• Tufts University, March, 2006

"* Michigan State University, March, 2006

"* AFOSR-Washington DC, March, 2006

"* SIAM Annual Meeting, Boston, Massachusetts, July, 2006

"* American Physical Society, Division of Plasma Physics, November, 2006

b. Consultative and advisory functions to other laboratories and agencies.

Dr. Christlieb held an NRC-AFOSR Summer Faculty Fellowship in 2005 at AFRL-
Edwards for work in collaboration with Dr. Jean-Luc Cambier. They focused on: (1) un-
derstanding the unanticipated enhanced nonlinear propagation of error in combined Monte
Carlo PIC codes, and (2) numerical heating in particle codes.

Dr. Jean-Luc Cambier (AFRL) approved the following two related projects which pro-
vided student and postdoc support.

"* AFRL, F013829, 09/01/05-04/30/06, $49,396, "Hybrid Plasma Kinetics Modeling",
PI: A.J. Christlieb, Co-PI: R. Krasny

"* AFRL, F013830, 08/25/05-03/31/06, $45,364, "Treecode Laser Plasma Simulations",
PI: A.J. Christlieb, Co-PI: R. Krasny

Dr. Fariba Fahroo (AFOSR) approved the following related project which provided post-
doe support.

* AFOSR, FA9550-06-1-0529, 09/01/06-05/31/07, $50,000, "A Grid-Free Particle Method
for Electrostatic Plasma Simulations", PI: R. Krasny, Co-PI: A.J. Christlieb
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Grid-Free Plasma Simulation Techniques
Andrew J. Christlieb, Member, IEEE, Robert Krasny, John P. Verboncoeur, Member, IEEE, Jerold W. Emhoff,

and lain D. Boyd

Invited Paper

Abstract-A common approach to modeling kinetic problems in in unbounded domains in the space environment and give rise
plasma physics is to represent the plasma as a set of Lagrangian to internal layers (e.g., solar flares). This paper reports on the
macro-particles which interact through long-range forces. In the development of a novel grid-free approach for simulating these
well-known particle-in-cell (PIC) method, the particle charges
are interpolated to a mesh and the fields are obtained using type of problems.
a fast Poisson solver. The advantage of this approach is that Nonequilibrium plasmas can be described by a variety of
the electrostatic forces can be evaluated in time O(N log N), models depending on the physical conditions. Complete infor-
where N is the number of macro-particles, but the scheme has mation is obtained by solving the Boltzmann equation for the
difficulty resolving steep gradients and handling nonconforming distribution function fi(t, xi , v) of each plasma species i
domains unless a sufficiently fine mesh is used. The current work
describes a grid-free alternative, the boundary integral/treecode Ofi Fi
(BIT) method. Using Green's theorem, we express the solution to -+ Vi - VT, + "V, fi = (1)
Poisson's equation as the sum of a volume integral and a boundary Ot at
integral which are computed using particle discretizations. The
treecode replaces particle-particle interactions by particle-cluster where xi is position, vi is velocity, Fi is the applied/self force,
interactions which are evaluated by Taylor expansions. In addi- rnmi is mass, and {afil/O¢t} is a convolution integral describing
tion, the Green's function is regularized and adaptive particle particle-particle collisions [4]. Because (1) is six-dimensional
insertion is implemented to maintain resolution. Like PIC, the plus time. it is not computationally feasible to solve it for each
operation count is O(N log N), but BIT avoids using a regular plus ti
grid, so it can potentially resolve steep gradients and handle species. However, to make accurate predictions about the be-
complex domains more efficiently. We applied BIT to several havior of the system, a kinetic description is often necessary for
bounded plasma problems including a one-dimensional (1-D) at least one of the species. For example, the tail of the electron
sheath in direct current (dc) discharges, 1-D virtual cathode, cold distribution function (EDF) plays a dominant role in the ioniza-
two-stream instability, two-dimensional (2-D) planar and cylin- tion process. Often the energetic tail is far from a Maxwellian
drical ion optics, and particle dynamics in a Penning-Malmberg distribution, hence, a kinetic model is necessary to accurately
trap. Some comparisons of BIT and PIC were performed. These
results and ongoing work will be reviewed, describe the EDF and thereby correctly describe the ionization

Index Terms-Boundary integral method, Coulomb potential, process [5], [6].

grid-free, ion optics, multipole expansion, particle-in-cell method, Many options are available for the numerical solution of the
Penning-Malmberg trap, Poisson solver, sheath formation, Boltzmann equation (1) [7]-[15]. In the case of collisionless
treecode algorithm, two-stream instability, virtual cathode. plasma, (1) reduces to the Vlasov-Poisson (VP) system. One

well-accepted approach is solve the VP system using a La-
I. INTRODUCTION grangian framework (LF). In an LF, f(t,x,v) is represented

as a collection of macro-particles in phase space [15]. TheM ANY important problems in plasma physics involve particles are given an initial distribution by sampling phase
bounded domains with complex geometry, e.g., space- space at t = 0 and the evolution of the system is obtained by

craft thuster plume interactions [1], plasma sensors, and solving Newton's equations for each particle
semiconductor fabrication systems [2], [3]. Plasmas also arise

Manuscript received September 25. 2005; revised January 24, 2006. Thish
work was supported in part by the Air Force Office of Scientific Research
(AFOSR) under Grant FA9550-05-1-0199, in part by the National Science In this approach, collisions can be accounted for by coupling
Foundation under Grant DMS-0510162, in part by the Air Force Research this method to a Monte Carlo technique [15].
Laboratory (AFRL)-Edwards Contract F013829 and Contract F013830. and in The electrostatic force in three dimensions is given by
part by AFRL-Kirtland.

A. J. Christlieb and R. Krasny are with the Mathematics Depart- N
ment, University of Michigan, Ann Arbor, MI 48109-1043 USA (e-mail: qk (3christli(, Pumnich.edu). Fj =z.. xj "- xk.(3

J. P. Verboncoeur is with the Nuclear Engineering Department. University of -=O

California. Berkeley, CA 94720-1770 USA.
J.W. Emhoffand1. D. Boyd are with the Aerospace Engineering Department, for j = 1,..,N. Direct summation requires O(N 2 ) opera-

University of Michigan, Ann Arbor, MI 48109-2140 USA. .• "
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10 . - , locally refined meshes. Moreover, in regions where coarse and
9--1 fine meshes intersect, the change in resolution can lead to spu-

8 rious features. For hyperbolic transport equations, this is a local
7 .defect that can be corrected, but for elliptic field equations the

S6 * difficulty is nonlocal and a small error in one location can affect
"• -\ .the entire solution. Solutions to this problem involve filteringo5 [25], but this can introduce other artifacts.
0

t 4.. Here, we describe an alternative grid-free approach for

S".plasma simulations in complex domains, the boundary in-
2 ........... tegral/treecode (BIT) method. Treecodes were introduced

I: - as an efficient method for computing gravitational forces in
0 ... systems of point masses [26]. The key idea is to replace the
0 0.2 0.4 0.6 0.8 t particle-particle interactions by particle-cluster interactions.

inter-particle distance (x/Ax) In the simplest case of a monopole approximation, a cluster
of particles is replaced by a single particle carrying the total

Fig. 1. Coulomb force as a function of distance between two charged particles

within a mesh cell; one, two, and three dimensions compared with linear mass of the cluster. This reduces the work needed to compute
weighting PIC [151. long-range forces from O(N 2 ) to O(N log N). To gain effi-

ciency, the fast multipole method (FMM) uses higher order
particle-in-cell (PIC) method. PIC involves four steps: particles multipole expansions and cluster-cluster interactions [271,
are first interpolated to a mesh to give a density, a fast Poisson [28], while other approaches use variable order expansions and
solver is used to compute the fields, the force is interpolated locally adapted clusters [29].
back to the particle locations, and finally the new xj and vj are Treecodes and the FMM have been used extensively in as-
computed [7], [8]. trophysics [30], fluid dynamics [31], and molecular dynamics

PIC has optimal performance when the underlying mesh is [32]. Treecode simulations have also been conducted for dense
uniform. This is because on a nonuniform mesh, standard finite plasmas in simple domains with free-space or periodic boundary
difference stencils become lower order accurate and more elabo- conditions [17], [33], [34]. However, realistic plasma systems
rate stencils are required to restore higher order accuracy. Other generally require Dirichlet, Neumann, or mixed boundary con-
mesh-based effects include difficulty in resolving internal layers ditions on a domain with possibly complex geometry. In this
[16] and an incorrect description of interparticle forces within a case, a boundary integral method can be used to correct the
mesh cell [15]. Moreover, not resolving interparticle forces can free-space potential and account for the presence of a boundary
have a significant impact on systems where Coulomb collisions while retaining the essential grid-free nature of the scheme [35],
are important, as in high-density plasmas [1 7]. To illustrate this, [36]. Boundary integral methods use Green's formula and recast
Fig. I plots the exact Coulomb force as a function of distance be- the original partial differential equation, say Poisson's equation,
tween two charged particles within a mesh cell, in one, two, and as an integral equation [38], which reduces the dimensionality
three dimensions, compared to the result from a linear weighting of the problem by one.
PIC scheme. The PIC results differ considerably from the exact The grid-free BIT approach is an attractive alternative to
force. This can lead to spurious plasma heating, but the opposite mesh-based PIC methods. One advantage of a BIT approach is
occurs in a damped system, i.e., the plasma can be erroneously that it eliminates errors introduced by interpolation to the mesh.
cooled [7]. To see why this is a problem, consider a case in which Moreover, BIT can naturally handle systems with nonuniform
scattering due to small angle electrostatic collisions is impor- particle density and complex geometry. We have applied BIT
tant. In a standard PIC scheme, the interparticle force falls to to simulate one-dimensional (l-D) sheath formation in direct
zero inside a mesh cell (Fig. I), which is unphysical. The small current (dc) discharges, I-D formation of a virtual cathode,
angle scatter is then computed incorrectly, leading to unphysical two-stream instability, two-dimensional (2-D) planar and
cooling of some particles, cylindrical ion optics, and charged particle dynamics in a

Much effort has gone into overcoming these difficulties. Fi- Penning-Malmberg trap. Here, we present preliminary timing
nite element PIC addresses the issues of complex domain ge- comparisons between BIT and multigrid PIC ]or 2-D planar
ometry and boundary layers, but there are still problems with in- geometry. In the following sections, we outline the BIT method,
ternal layers and resolving interparticle forces within a mesh cell discuss its advantages and disadvantages, present a summary
[18], [19]. The particle-particle/particle-mesh (P3M) method of these applications, and conclude with a discussion of future
was developed to address the issue of interparticle forces [8], prospects.
but the cost approaches O(N 2). Another method for handling
short-range Coulomb forces sums the collisions into a single II. BIT
large angle event [20], [21], but resolving sharp gradients re-
mains an issue. The current state of the art for plasma simu- The BIT scheme combines a grid-free field solver with a
lations combines PIC with adaptive mesh refinement (AMR) boundary integral method, and we may view the approach from
[22]-[25], but despite the success of AMR-PIC, some limita- either of two perspectives. First, BIT is complementary to PIC
tions persist. For time-dependent simulations in complex ge- in the sense that the mesh-based field solver in PIC is replaced
ometry, AMR requires elaborate meshing tools to generate the by a grid-free field solver in BIT. The second perspective is to
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view the Lagrangian macro-particles as marker points on phase respectively. Letting It = 4) be the solution of Poisson's equa-
space curves. As the curves evolve, the marker points spread out, tion (4) and g = G the free-space Green's function, we express
and new points are inserted along the curves to maintain resolu- the potential as
tion. Point insertion is performed by interpolation with respect
to a Lagrangian parameter along phase space curves [29], [37]. z,
To accommodate point insertion, the present formulation of the ,,(Y) = f -G(x'y)---)d.x
field equation is more general than in our previous work [35], Jf
[36]. In the following sections, we derive a Green's function rd d
method for Poisson's equation, convert the volume integral to a + 4)(X)-G(.xly) - G(xly) (Dr) (7)
sum over Lagrangian macro-particles, show how multipole ex- L " =z
pansions can be used to evaluate the sum efficiently, and demon-
strate how to handle boundary conditions. and

A. Potential Function 41 (y) = /-G(xly) P(x)dX

Poisson's equation is 0

±f (4(x)V,,G(xIy) - G(xIy)V.4F(x)). ndS, (8)
Do

V24P(X) = -P(X ab)(z) + bOWF(z) =y(z) (4) where {yfy} E Q \ Oa2. Note that 4 (y) = 4),P(Y) + (H(Y),
where the volume integral, Pp(y), is the particular solution of

where 4(x) is the electrostatic potential at x E f2 \ iO, p(x) is (4), and the boundary integral, 4FH (Y), is the homogeneous so-
the charge density, e,, is the permittivity of free space, 0, is the lution. For later reference, we record the particular solutions,
normal derivative, z E 0Q2, and the constants a, b determine the
type of boundary condition (Dirichlet, Neumann, or mixed). To i P
solve the Poisson equation, we employ Green's formula IDr,(y) = I /G(xy) p() 4 dx (9)

zo

.d2 2hd d and

(lij.g - Y -11 (Ix h!g-. g- " )ýz

I,,)= - /G(xly) - d (10)

and

and the homogeneous solutions

i(hV2g - gV2h)'x = (h, g - gVh,), ndS [E(x) d G(xly) -G.,ly -d ):r)

in one and two dimensions, respectively. Note that the bold dx and
implies a 2-D integral over the coordinate x E Q. We also
use the free-space Green's function for the Laplace operator, (D = ( (•(x)V.G(xly) - G(xly)Vx4(x)). n dSx.
G(xly), which satisfies

Do

(12)
Depending on the boundary conditions, 4)H(Y) can be repre-

V2G(xly) = C6 (lix - Y112), [0nGIy = C, [G]y = 0 sented as either a single layer or a double layer potential. This
will be discussed below.

where 1Ix - Y112 = v/Zi(xi - y) 2 , [']y denotes a jump at
y, and C depends on the dimension. The free-space Green's B. Volume Integral/Particular Solution
functions in one and two dimensions are Recall that the charge density in general is given by

G(xly) _ -yY) (5) p(x) = / -qifi(tx,v)dv (13)2 J
IRd i=1I

and where d is the number of velocity dimensions and m is the

IIIn 01X Y112) number of species. We consider two approaches for obtaining
G(xly) = In 2 (6) the potential 4,p.
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Particle Approximation: In our first approach, we represent V(1
the phase space distribution fi as a set of delta functions

N,

f,(t, x, v) E ?vJ,(x - x+)6(v - v,)
J=1

Xo N
where w. is the weight at {Xj, V.j }. Substituting this into the
equation for p gives Fig. 2. Flow map in phase space. t,,: Initial time. T: Later time.

itN, where .L/ = 10(x, v)/O(xo, vj)l is the Jacobian determinant of
p(x) = q j/j6(x - xj) the flow map. It is well known that if the collision operator is

j=t 7=1 identically zero, the fraction of fi in a phase space volume Ft,,

and the particular solution then reduces to is preserved under the action of external fields, and, therefore,
in the absence of absorbing boundaries, the volume integral of
fi over phase space must be constant for all T > t,,

771 N,

D = -() G(xjIy). (14)
i=1 G=1 fi(T, x, v)dxdv = fi(t, x, ,,v)dxodv,,. (16)

fT Fto

This is the same as in PIC, where the phase space particles x 3

are viewed as macro-particles. From (15) and (16), it follows that
Integral Form. In our second approach, we restrict attention

to the Vlasov equation so that the collision operator in the Boltz-
mann equation (1) is set to zero. We make this assumption in
order to focus on problems in which diffusive effects due to col-
lisions are negligible. In the absence of such diffusive effects, whi exrsses the onservation o
the solution of the Vlasov equation can develop fine scale fea- the p ation.
tures and these are handled here by point insertion. Extending Nowrecallsth prtiar solut ion (0.Ss
this approach to collisional plasmas is a topic for future work, charge density from (13) into that expression gives

In this approach, we employ ideas from Lagrangian vortex
methods in computational fluid dynamics [31]. The volume in- I,/,(Y) = [- (T. ,vd
tegral over x for 4)p, given above, is recast as a volume integral =
over coordinates (x,0 v,), where

Under our change of variables, the integrand is

x = x(t, x0, v), v = v(t, X0 , V,)
G (x(T x. , v.) lY) fi (T, x(T, x.. v.), v(T, xo, v,,)).1o,

is the flow map in phase space, i.e., (x,, v.) is the initial con- G (,

dition (location, velocity) that maps into (x, v) at a later time t.
The initial condition (x,, v.) is a Lagrangian parameterization and using (17), the particular solution becomes

of phase space and this is critical to the point insertion scheme,
as explained below. The volume integral over initial condition mG (x(T, x., v,)ly)
for 4,p is then discretized using the trapezoidal rule. Dip(y) = _ q. //

Before recasting the integral for Pp, it helps to think about '= r,o
how we treat the distribution function fi. Consider a volume Ft x fi(to, x 0 , v,)dxodv.. (18)
in phase space at the initial time t = to and a later time t = T
as in Fig. 2. Note that the sketch is intended to represent one, Assuming now an initial discretization of phase space (xj, Vk)
two, or three dimensions in space and velocity. Using the change and applying the trapezoidal rule, the integral over I"., for each
of variables formula, the integral of fi over volume FT can be species fi can be approximated by
expressed as an integral over the initial volume Ft,

N, M,

/fi (T, x, v)1 -jk -I (x( 0 xjzkYfi (t I, X j, Vk)
.11fT. X, v)dxdv j=O k=O -

where j denotes a single or double sum approximating a single
=j fi (T. x(T, x.. v0 ), v(T x, v,)) JoIdxodv. (15) or double integral in space and k denotes a single, double, or

r,,. triple sum approximating the velocity integral, and 717j, wk are



CHRISTLIEB et al.: GRID-FREE PLASMA SIMULATION TECHNIQUES 153

Vo t=t,,V t=I'i Cluster C 0Y

0 O C0

* 0 0

* ge * 0 X

Fig. 3. Stretching of phase space and particle insertion. Black dots: Original Fig. 4. Particle-cluster interaction: particle y, cluster C, cluster center x,.
particles. White dot: Inserted particle.

in optimizing their performance [43]-[511. Our approach fol-
quadratdre weights. Setting {i j,kt = 71)jWkfi(to, Xj, Vk), (18) lows [29], which extends the Barnes-Hut treecode [26] in var-
is approximated by ious ways.

Particle-Cluster Interactions: The particular solution can be

cast in the form
ml, ) in N,IVM, qiYiVlGxTXjV) 1)Ti, Ni

P(Y) = - . q-{iJk}G(x(Tx )Y) (19) =y) ',i(y), (Di(y) ?wjG(xjly). (20)
i=1 j=OkO kO 3fr ==

i=1 3=l

where { ijk) is the phase space weight of a macro-particle. The The simplest procedure for evaluating (i is direct summation,
sum in (19) resembles the sum in (14). but this requires O(N 2 ) operations which is prohibitively ex-

Due to the stretching of phase space during a simulation, it pensive when N is large. The key idea in a treecode is to replace
often happens that adjacent Lagrangian particles on a curve in the particle-particle interactions in (20) by suitably chosen par-
phase space move far apart, as depicted in Fig. 3. In this case, ticle-cluster interactions.
the quadrature formula becomes inaccurate, but this can be con- The potential Di(y) is first expressed as
trolled by inserting new particles to maintain resolution. Sup-
pose that a particle needs to be inserted between {i,j, k} and ýDi(y) = Z j w3 G(xjIy) = i F,(y, C) (21)
i,j + 1, k}, based on some criterion, as shown in Fig. 3. Recall c iEC C

that the initial phase space coordinates are Lagrangian param-
eters. We insert a new particle at the midpoint of the interval where
between {i,j, k} and {i,j + 1, k) in phase space at t = t. The D i(y, C) = Z .G(xjIy) (22)
phase space weights -y of the new particle and the existing par-
ticles {i,j, k} and {i,j + 1, k} are determined in accord with JEC
the trapezoid rule over the initial condition. The phase space co- is the potential due to the interaction between particle y and a
ordinates of the new particle at time T are determined using a cluster of particles C = {xj xj E C} (see Fig. 4). The proce-
cubic interpolating polynomial with respect to the Lagrangian dure for choosing the clusters will be explained below; for now,
parameters at particles {'i,j - 1, k}, {i,j, k}, {i,j + 1, k}, and it is enough to assume that the clusters in (21) are nonoverlap-
{i~j + 2, k}. The same process can be carried out to refine with ping and their union is the entire particle distribution.
respect to velocity as well. It should be noted that, in principle, Next, perform a Taylor expansion of the Green's function
intermediate times could be used to define the Lagrangian pa- about the cluster center x,
rameter for point insertion, however, that is not done here. Fur-
ther details about the particle insertion scheme will be discussed Di (y, C) = E wiG (x, + (xj - x,,)Iy)

elsewhere [41]. Related work is in references [29] and [37]. jEC
p71y•,j 1o a.G(xIy) (xj - x,)t

C. Treecode jEC =0 o G

Evaluating the particular solution in (14) and (19) is an ex- - 1 0
ample of N-body problem and the central processing unit (CPU) =.- G( x.y) y x - x, )
time is an important issue [42]. We employ a treecode to reduce 1=0 iEC

the operation count from O(N 2 ) to O(N log N). In a treecode, P

the particles are divided into a hierarchy of clusters and the par- E Z T (x, y)iA (C) (23)

ticle-particle interactions are replaced by particle-cluster inter- 1=0

actions, which are evaluated using multipole expansions. Barnes where p is the order of approximation, T, (x,, y) is the Ith Taylor
and Hut [26] used monopole approximations and a divide-and- coefficient of the Green's function, and M,(C) is the lth mo-
conquer evaluation strategy, while Greengard and Rokhlin [27] ment of the cluster. Note that Cartesian multi-index notation
used higher order spherical harmonics expansions and a more is used, e.g., in two dimensions if we set x = (X 1 - X2) and
sophisticated evaluation procedure. Treecodes have been very I = (11,12), then xt  1 X2 , and so forth. The error in the
successful in particle simulations and there is ongoing interest approximation is 0((r/R)P), where r = maxj IJxj - X,-112 is
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t level 1 level 2 level 3 level 4 function ComputePotential(y, C)

is the Taylor approximation sufficiently accurate'?
if yes, compute 4)i(y, C) by Taylor approximation
if no, does C have any children?

(b) if yes, call ComputePotential(y, C') for each
[) ," •child C' of C

Elm if no, compute 4 ) i(y, C) by direct summation

Fig. 6. Procedure for evaluating a particle-cluster interaction ,4,,(y, C).
Fig. 5. Examples of tree structure. (a) Standard. (b) Adaptive [29].

Regularizing the Green's Function: In two and three dimen-
the cluster radius and R = lJx, - Y112 is the particle-cluster sions, the interparticle force Fj in the equations of motion (2)
distance. The speedup occurs because the cluster moments are becomes singular as the distance between the particles tends to
independent of the particle y, and the Taylor coefficients are in- zero, placing a constraint on the maximum allowable time step.
dependent of the number of particles in the cluster C. The Taylor Our approach to overcoming this problem is to regularize the
expansion in (23) is a Cartesian analog of the classical spherical Green's function [291, [37]. In two dimensions, we use
harmonics multipole expansion [52]. A recurrence relation can In (lix - y 1, + 62)
be used to efficiently compute the Taylor coefficients to any de- Gb(.7:Iy) = - 47r
sired order [29].sired Struure: [. swhere 6 is a smoothing parameter, so that the maximum forceTree Structure The set of all clusters has a hierarchical treecould be d-
structure. In a standard treecode, the clusters on each level of the in proportioal t op/rthe opite value of i c beudr-treare uniform cubes obtained from bisecting the previous gen-teindbphsclrorisofheytme.,nanurl
tree ratio rm cubes ine d co m bisecting the is gen plasma, one could use the Debye shielding length to choose 6.
eration of clusters in each coordinate direction. This is shown However, in the work presented here, 6 was treated as a numer-
in Fig. 5(a) for a set of particles on a spiral curve. However, ical parameter.
in many cases, it is beneficial to shrink the boxes as shown in
Fig. 5(b). The nonuniform clusters in the second scheme are D. Boundary IntegralHomogeneous Solution
well-adapted to the particle distribution and this can lead to a
savings in CPU time. Having completed our discussion of the particular solution,

Evaluation Strategy: The potential 4)i is evaluated using next we describe a boundary integral method for the homoge-

a recursive divide-and-conquer strategy [26]. As indicated in neous solution; for an alternative finite element formulation, see
(21), the potential 4)i at a given point y is expressed as a sum [38]. Recall that the potential function 4) satisfies the Poisson
of particle-cluster interactions 4)i(y, C) for suitably chosen equation (4) subject to Dirichlet, Neumann, or mixed boundary

clusters C. The treecode has three options for evaluating each conditions depending on the application. The homogeneous so-

term 4) i(y, C): Taylor approximation, direct summation, or lution is given in (11) or (12) and at each point on the boundary
descending the tree. The present simulations used the standard either 4), V4) . n, or aD + bV, • n is specified. As an cx-
multipole acceptance criterion (MAC), i.e., the Taylor expan- ample, consider the case of Dirichlet boundary conditions in
sion is used only if r/R < 0, where r is the radius of the which 41 = a is known but VD • n = J3 is unknown. We re-.

cluster, R is the distance between the particle and the cluster, quire the boundary condition to be satisfied in the sense that

and 0 is a user-specified parameter [26], [45]. If the MAC is not lirn 4 (y) = a(z), for z E OQ. (24)
satislied, the code considers the interactions between particle y yZ

and the children of cluster C. If the cluster C has no children, A similar relation holds as well for the other possible boundary
then it is a leaf of the tree and 4);(y, C) is evaluated by direct conditions.
summation. The procedure is sketched in Fig. 6. For our Dirichlet example, this yields an equation for /3; a 2

Electrostatic Force: The method described above can be x 2 linear system in one dimension
adapted to compute the electrostatic force on a particle Xk in lira (/3(zi)G(zily) - /3(zo)G(zoly))
time O(N log N). Substituting (23) for the particle-cluster in- i-Z.zv)

teraction into (20) for the particular solution, using the relation = ,(z,) - I (zo)) - lita (o(y) - Dp(y)) (25)
=Xk =1 ( lira (o•(y)--=pv 2))-Zp(,25

E(x.) -y( x and an integral equation of the first kind in higher dimensions

for the electric field at the particle xk, and noting that +3(x)G(x)z)dS 2- + p(Z)
VyG(xly) = -VxG(xly), the electric field is ./1 2 + •l'dz)

E z(x• z z (Vx ,(x•,x.)) M 1 (C). ++ a(x)VxG(xlz), ndS,, (26)

C ijEC 1=0 Df
where ar(z) on the right side of (26) is divided by 2 to account

Then the electrostatic force on Xk due to species i is qkwkEi, for the singular nature of the limit as y approaches the boundary
where qA.wt, is the total charge on particle V. [53].
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While (25) can be directly solved for the unknowns, (26) will boundary and a single layer potential is used for the Neumann
be solved by a collocation method. First, discretize the boundary boundary. Mixed boundary conditions can be handled by going
integrals into panels 0Qj for j = 1,..., M back to the original formulation using (12) for 4).

1 1 l ( ,)G x ,) d S x , =- " *( z ) 4
f (o0) III. APPLICATIONS

+j f a(2 In this section, we give an overview of the problems to which
the BIT approach has been applied. We divide the discussioninto two sections based on the problem dimension.

Choosing z = zi to be the center of the ith panel and letting
(a = (j and /3 = /3j be constant along each panel Of2j (for A. J-D Problems
example), we obtain We used BIT to simulate several benchmark I-D problems
At a(z in plasma physics including sheath formation, virtual cathode
Z /.• Z wIG(xjtIzi) - -2V + IPp(zi) formation, and the two-stream instability. In the latter case, we
J=1 2 also used particle insertion.

Al Sheath Formation: The I-D sheath domain is bounded by
+ S aj w VVxG(xjIlz) 'n., (28) two parallel metal plates a distance z1 - zo = L apart, each

j=l I held at a potential of zero volts. The domain initially contains a
neutral plasma with equal electron and ion densities. The elec-trons are lighter and more mobile than the ions, and a fraction of

wl are the corresponding weights. This yields a linear system the electrons near the wall impact the wall on a timescale much
for the [tj faster than the ion transit time. The reduced electron density near

the wall leaves a net positive charge in a narrow region between
A/I = K the wall and the main body of the plasma. This gives rise to a po-

tential barrier (sheath) at the walls, and if any of the remaining
where electrons are to escape, they must have a large enough velocity

to overcome the sheath potential. Eventually the system reaches
aij= E wG(xj7 lzi) a steady state in which the electrons are electrostatically con-

I fined to the interior of the domain.
We looked at this application in order to demonstrate that BIT

can reporoduce the undriven sheath in a decaying plasma as an
M initial benchmark. This sheath decay includes some kinetic ele-

= zi2 + 4Tp(z,) + 5 j Ea 7wVxG(x. zi) .nj. ments, since the tail is lost first and the Coulomb collision rate at
j=1 I these low densities is insufficient to maintain a Maxwell-Boltz-

mann distribution, so kinetic effects are important, and hence
This formulation worked well in our preliminary work [361. this is best represented by a kinetic model. This type of problem,
For geometrically complex domains, the linear system becomes decay of an undriven bounded plasma and resulting sheath for-
challenging to solve and an efficient method such as precondi- mation, has been studied by PIC at some length [54]-[56], and
tioned generalized minimal residual (GMRES) is required. Due is widely used as a benchmark for other models including fluid
to the special form of the matrix elements aij, the matrix-vector models [571, [58].
multiplication in each step of GMRES can be computed effi- In this simulation, the electrons are represented as mobile par-
ciently using the treecode. Hence, the matrix A never needs to tides, while the ions, being much heavier, are immobile. The
be explicitly constructed and stored, making geometrically com- Poisson equation takes the form
plex domains more tractable.

This approach can also be used for problems with Dirichlet [N
and Neumann conditions on different portions of the boundary V = .f- 5 wf,(X - r7 ) - (29)

0Q = OQD U OQN. In this case, we represent (PH as a combi- C0 [.i=

nation of single and double layer potentials
where c is the electron charge, N,. is the number of electrons

(IH(Y) = a(x)G(xly)dSx + (x)VG(xIy) ndS. in the simulation, and ni is the constant background ion den-
.1 o/ sity, chosen such that niL = wiN,. The electrons are initially

distributed uniformly in space with a random thermal velocity

where o, /3 are unknown functions. This eliminates the need sampled from a Maxwellian distribution.
to compute a boundary integral for each •i. We found through The potential is the sum of three terms
numerical experiments that the resulting matrix A is well-con-
ditioned when a double layer potential is used for the Dirichlet 1 (Y) = P, (Y) + (Di(Y) + DH(Y) (30)
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Fig. 7. Potential ,, as a function of position across domain for BIT and PIC. Fig. 8. Electron density for BIT and PIC. Ion density is also shown.

where 4F, is due to the electrons, 4)i is due to the background ion 4000
density, and 4)H is the homogeneous solution needed to enforce _ _ BIT
the boundary conditions 3950 ............ PIC

d
2  

E N,
=11 v i)b(.7 x 3:i 3900111

. (31) M 3850
) 0H J E

NHIz} = --[F,. -, + i]{ 4 5 z,} Z3800

The term '4, is given by (14), Fi is obtained by integrating E 3750.
twice, and 4)H is found by substituting (25) into (11) (.L

, = (y) ',wG(:.x 3700
(I(y) - ci 2 (32) ....................

4 )H(y) = G(zoly)/)(zo) - G(zsij)/1(ZI) 3650
where we have also imposed the boundary conditions 'D(zo) = 36000 L . ..

05E-08 I1E!07' 1.5E-07

(ID(zi) = 0 in (11). With these boundary conditions, the limits Time (s)
in (25) give

Fig. 9. Number of electrons as a function of time for BIT and PIC.

/t3(zo) = -G(zojzl)-1 [,D,(zo) + Fi,(zl)]I (33)
Fig. 8 plots the electron and ion densities for BIT and PIC.

BIT results will be compared with PIC results from [59]. Note As for the potential, the computed particle densities for the two
that the I-D Green's function in (7) is piecewise linear and so methods are almost the same.
the first order Taylor approximation is exact; this implies that Fig. 9 plots the number of electrons in the simulation as a
BIT computes exact forces and potentials in one dimension, function of time. Again the agreement between the BIT and
and gives identical results to direct summation. In the work pre- PIC results is very good. Both have an initial depletion rate
sented here, the BIT simulation was initialized using the same that matches the theoretical result. The particle number drops
parameter set as in the PIC simulation so that the only difference slightly faster for BIT, resulting in approximately 20 fewer
was in the field solver. In both simulations, the domain length particles after convergence, but this has negligible effect on
is L = 0.1 in, the number density of each species is 1013 m- 3 , the potential and the particle densities. To examine whether
and the electron temperature is 1 eV. The initial number of elec- the additional loss in BIT arises from the initial seed of the
trons is 4000 in both simulations. Maxwellian velocity distribution, many additional runs were

Fig. 7 plots the potential (D as a function of position across done, each using a different seed in the random number gen-
the domain for BIT and PIC. There is no significant difference erator. All of the results were within 1-3 particles of the BIT
between the two methods, either in magnitude or sheath thick- results in Fig. 9. Note that this does not imply that BIT and PIC
ness. The calculated matrix sheath thickness for this domain is will agree in a full discharge simulation. One explanation for
5.4 mm [60], comparable to the computed results of approxi- the discrepancy in the number of particles is that BIT includes
mately 10 mm for both BIT and PIC. short range Coulomb collisions which are neglected in PIC.
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Hence, we expect that the tail in BIT will be repopulated more x/L=1/16
quickly than in PIC. Since the tail is the only part that can ti| I ,
escape the potential well, we then expect BIT to have a higher 0.4
loss rate and hence a slightly lower number of particles than 0.2
PIC. 0.2

Virtual Cathode: Virtual cathodes (VC) are basic structures 0_ _ _ _ _

that arise in many plasma applications, e.g., they have been used 0.00 0.73 1.00
to explain anomalous acceleration of positive ions in a vacuum
diode [61], and have also been proposed as a confinement mech- xfL=5/16
anism for controlled fusion [63]. The formation of a VC is un-
derstood in general terms, but predicting the details is difficult 0.3

because the process is highly nonlinear. Such systems are often 0.2-
simulated using PIC [641, but it is not clear that this is optimal 0.1
since sharp gradients in the plasma properties occur near the 007 1.00
VC. 0.00 0.73 1.00

In previous work, we simulated the formation of a virtual x/L=9/16
cathode in one dimension using a BIT algorithm [35]. Two infi- o
nite parallel flat plates have applied voltages. The gap between -.E -
the plates is initially a vacuum, and one of the plates is heated to .1

the point where electrons are emitted and a current flows across 50.05 o1
the gap. For a sufficiently high emission rate, the maximum cur- ,)

rent density between the plates approaches a limiting value JCL " 0_//___ -___ ,,,____ ,,_
predicted by the Child-Langmuir law. When this happens, a vir- 0.00 0.73 1.00
tual cathode is formed somewhere between the two plates, and time t/"
the emitted electrons turn around and strike the emitting plate. Fig. 10. Time trace in the formation of a virtual cathode at three spatial

As the electrons repel one another, the potential minimum rises, locations across the channel, r/L = 1/16,5/16,9/16. Solid line is BIT/DS
thereby allowing the emitted electrons to again start crossing the and the dashed line is PIC.

gap, and the entire sequence repeats. We considered the classical
formulation in which the electrodes are held at ground and the BIT
emitted electrons have an initial velocity [39]. 1 .

For this nonlinear oscillator, we compared PIC, BIT, and di-
rect summation (DS). As noted in the section on sheath forma- 0
tion, DS and BIT agree to machine round off, so the main reason
for the DS calculation is for timing comparisons. For the BIT -1,
and DS runs, the grid-free solution to the Poisson's equation is 0 0.2 0.4 0.6 0.8
identical to (30), except that ni is identically zero. The PIC rou-
tine employed here used standard area-weighting. The injected PIC
current was varied by adjusting the charge/mass ratio of the par- 1 000000
ticles. With a small injected current, the solution converged to a 0 oo 00 oD

steady state and all three methods gave the same result to within > 0
plotting accuracy. The mesh size for the PIC simulation was de-
termined by decreasing the value until the solution converged
to the nonoscillatory steady state. This mesh spacing was then
used for the remainder of the PIC simulations. 0 0.2 0.4 0.6 0.8

With a higher injected current, a VC forms and the solution position

converges to a time-periodic state with nonuniform spatial struc- Fig. 11. Phase space plot at time t/T = 0.5. Irregular voids appear for PIC,
ture. Fig. 10 shows the time trace of the particle density (n/no) while BIT/DS has a smooth particle distribution.

at three locations x/L between the plates; just past injection,
near the VC, and downstream of the VC. Fig. 10 reveals signifi- three routines was the force evaluation kernel. In all simulation
cant differences between the BIT/DS and PIC results. First, the results presented, the time step used was that of the time con-
oscillation period is 5% greater for PIC than for BIT/DS, pro- verged DS method. The criterion for the time step was that the
ducing a significant phase lag. Fig. 11, shows the particle distri- phase space point wise L2 norm must be less then a user set tol-
bution in phase space at a given time. The plot shows that some erance
of the emitted particles turn back and approach the emitter plate. 'At
The PIC results have irregular voids, while the BIT/DS results DS(At) - DS - 2 <0

have a smooth particle distribution.
All three methods used the same particle push and particle at any observed time between t. and tf. This guarantees point-

injection/deletion procedures. The only difference between the wise convergence in phase space. The observed differences in
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Initial Condition where e is the charge on an electron and N,, is the number of

electrons in the simulation.

As in the sheath formation problem, the particular solution
0 ý.p is the sum of D,. and Fi from (32). The boundary condi--ý 0.5-

2ý tions determine the homogenous solution given by (25), i.e.,
"•D(zo) = 4)(zl), d4,(zo)/dx = d¢(zl)/dx gives a.(zo) =

7 0 ck(z 1 ), f3(zo) = fI(zl). Thus, (25) gives

/)(zl)G(zilzo) = ( ,•(Zl)- 2(zo + 'p(zo)

and

0 1 2 3 4 5 6

Particle Position (27t x/L) -/3(zo)G(zolzl) = (- (zl) - •ja(Zo) ± I'P(Zl).

Fig. 12. Two-stream instability; initial electron distribution in phase space.

Using the periodic boundary conditions and noting that
the simulation results, shown in Figs. 10 and 11, can be at- G(ziIzo) = G(zolzi), we obtain

tributed to the error in interparticle force within a mesh cell of
a PIC simulation, as shown in Fig. 1. These preliminary runs 0(Zl) I 41
were performed using Matlab; PIC required 7 h, BIT 12 h, and 4
DS seven days. Further work is needed to optimize the run time
of the BIT code, but the results suggest that BIT is capable of re- and

solving small-scale features better than a mesh-based PIC code. 1
Two-Siream Instability: This example concerns a neutral /3(zi) 2G(ZlZO) (,t(zo)- 41,(zI)).

plasma with equal numbers of ions and electrons in a I-D
periodic domain. As above, the electrons evolve dynamically The initial ion and electron density is 4 x 106cim-3. All the
and the ions are immobile. Consider an electron distribution phase space plots are normalized to the initial electron velocity
function of the form f(x,v, to) = f(.7:, -v, to) = g(Iv), i.e., v = c. Time stepping was performed using the fourth-order
independent of position x and an even function of velocity v. Runge-Kutta (RK4) method and the results were considered
This is an unstable equilibrium solution of the Vlasov-Poisson time accurate when the difference between runs with At and
system. A perturbation in velocity gives the electrons a spatial At/2 was less then 5%. Spatial (i.e., phase space) convergence
variation in momentum. This leads to nonuniformity in the was achieved by systematically increasing the number of sim-
electron spatial distribution, thereby generating an electric field ulation points NA. Fig. 13, top frame, shows a time converged
which feeds back into the velocity perturbation, causing phase result for N, = 3200 after 64 000 time steps with At = (z1 -
space to fold up on itself. zo)/kc, where k = 16 x 104. The electron distribution function

As with the virtual cathode, we focus on a cold two-stream is concentrated on a rolled-up curve in phase space. Fig. 13,
instability in the sense that middle and bottom frame, shows that the simulation loses spa-

tial accuracy later in time when adjacent particles become sep-{ 1 , ifv = v arated.g/(Ivl) = 0, otherwiseared
To overcome the loss of resolution that inevitably occurs

where v, is the initial unperturbed speed of the electrons. The using a fixed number of particles, we implemented a particle
initial velocity perturbation has the form insertion scheme as discussed briefly in Section II-B. In these

results a simple distance criterion is used, i.e., a new particle is
vp,(x) = asin (27 " 0  inserted between particles i and i + 1 when\ z1 - zo)

3
where o. is the perturbation amplitude. Fig. 12 shows the initial 2/(., - + + (vi - "i+t)

2 > . S
electron distribution in phase space. The electrons are modeled
as particles while the ions are treated as a constant background where S is the initial particle spacing. Fig. 14 shows the re-
density hi. The potential of the domain is then described by sult obtained using particle insertion, starting with 200 points

[N. 1 and using the same time step as in Fig. 13. This simulation was
v 2

4) = _ 7vI6(r - ri) - 71i checked for convergence both in time as well as in space by
o[j=L computing with twice as many initial points. The results indi-

cate that particle insertion is an efficient means for maintaining
with periodic boundary conditions accuracy as the solution evolves in time. A detailed analysis of

dtb)(zo) _(d•(zl ) these results, as well as extension to the warm two-stream insta-
dx(zo) = 4(zi), d. d'. bility, are topics for future work.



CHRISTLIEB et al.: GRID-FREE PLASMA SIMULATION TECHNIQUES 159

3200 points t=2.5s Point Insert t=2.5s
10- . ' ' 10-

o 0

100

0 00

0 0 a) 0 0ll

> 5 >*o~"

E o M0
0 o

_10. _ o10.

0 1 1 2 3 4 5

0 1 2 3 4 5 6Particle Position (2it xIL)

Particle Position (2nr x/L)

3200 points t=3.3s Point Insert t=3.3s
o "

10 .0 ion fo

?00
0 0 0

Z 0,
)0 of (D

00 7[5 -5e

0o. ~00 ;00 10.

"• 0.o In this test, N particles were randomly placed in a square do-
.. _4 main with grounded boundary and the electric field was com-0puted at each particle location using BIT, PIC, and direct sum.

"o Note that if the homogeneous solution in (12) is computed
-- t exactly, then direct sum yields the exact solution of the test

10) oU o problcm. Thc Grcen's function for a square domain can be•0 Intexpressed as an infinite series, but we chose to satisfy the5- 0 0000 boundary condition using the free-space Green's function. This
.r -10- o requires solving a boundary integral equation for the homoge-0 neous solution. We expressed the homogeneous solution as a

0 1 2 3 4 5 single layer potential and subdivided the boundary into panelsParticle Position (27t x/L) as discussed in Section II-D. In this example, the terms in the

matrix, aij = f G(XJXx,)dSr•, can be integrated exactly andFig. 13. Two-stream instability; phase space plot with N, = 3200. Top frame the panel strengths are determined to within roundoff error. The
= 2.5. Middle frame t = 3.3. Bottom frame t = 4.5. number of panels in the direct sum solution is chosen so that

the error is less than 1%. The resulting boundary integral direct
B. 2-D Problems sum result is taken as the exact solution.

In addition to the I-D problems discussed above, we also The error is measured by the expression
applied the BIT approach to several 2-D problems, including Nplanar and cylindrical ion optics, and particle dynamics in a Pen- eitor ar= e Thening-Malmberg trap. We performed a detailed timing compar- error -

ison in 2-D planar geometry between BIT and multigrid PIC.
We start with the timing comparison and then discuss the appli- where E"I0 is the direct sum electric field at particle i and EdiIrt
cations listed above, is the BIT or PIC electric field approximation. Table I shows

Timing Results: In this section, we compare the efficiency of timing results versus number of particles for DS, PIC-MG,
BIT and PIC simulations for a 2-D test case, focusing on the and BIT. PIC-M denotes a PIC solution on an M x M grid
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TABLE I N
CPU TIME (s) FOR DS, PIC-M, BIT-T (SEE TEXT FOR DtI-INITIONS)

N DS PIC-128 PIC-256 PIC-512 BIT-I BIT-2 E
150K 792 0.50 4.53 32.4 19 22 E
300K 2995 0.52 4.54 32.7 38 45 D D-
600K 11633 0.55 4.55 32.9 78 90 D

CL
Z) 0

TABLE 11
ERROR FOR PIC-M, BIT-T (SEE TEXT FOR DEINITIONS) Screen Accel

N DS PIC-128 PIC-256 PIC-512 BIT-I BIT-2
150K 14% 10% 7% 8% < 1 Fig. 15. Geometry for planar ion optics simulation. D: Dirichlet. N: Neumann.
300K 13% 8% 6% 7% < 1%
600K 14% 10% 8% 6% < 1%

using a multigrid solver [62]. BIT-T denotes a boundary
integral/treecode solution using a Taylor expansion of order 6.OE.2 01

T (BIT-I used MAC parameter 0 = 0.9 and BIT-2 used ,
0 = 0.45). Table II shows the corresponding errors.

2.OE-01
A few observations can be made. 1) As a function of N, DS

is O(N 2 ), PIC-MG is almost independent of N over this range, o.EE .0E,.1 1.0E+O0 5 E+O0 2 OE000

and BIT displays O(N) behavior although theoretically it is X Location
O(N log N). 2) For fixed N, the time required for PIC increases
by a factor of 8 when the mesh is refined by a factor of 2 in each Fig. 16. Snapshot of particles in a planar ion optics simulation. Also shown

y are the leaf clusters in the treecode, assuming a maximum of 200 particles perdirection. Alteratively, the time required for BIT increases by leaf.
a fraction less than one when going from first to second order
Taylor expansion. In terms of accuracy, the PIC-512 and BIT-i
results have comparable errors, while the BIT-2 results have is neutralized by an electron source, making the downstream
much smaller errors. Note that PIC would require an exceed- potential approximately zero, although the present BIT simula-
ingly fine mesh to achieve the same accuracy as BIT-2, with a tions included only the ions.
correspondingly large increase in the CPU time (estimated to In the present simulations, ions were injected at a rate of
be at least 2000 s). Note that in Table II, the PIC results display 10 per iteration, each with a weight corresponding to number
first-order convergence; this is due to the choice of interpolation density 2.3 • 10 13 

1t1-3. This low density was used because
and the effect of differencing the potential to obtain the electric the absence of neutralizing electrons causes the space-charge
field. limit to be reached at much lower density than in typical ion

The timing results imply that for problems where strong thruster operation. The timestep was At = 10-9 s and the par-
coulomb interactions matter, an extremely fine spatial dis- ticles were injected with Maxwellian velocities centered about
cretization may be required to resolve these effects in a PIC 2000 m/s. The boundaries were modeled using a combination
simulation. In summary, for the choice of parameters used in of single and double layer potentials, with panels uniformly dis-
this strong coulomb interaction test, PIC is more efficient for tributed on each segment. The line integrals of the Green's func-
10% accuracy and BIT is more efficient for 1% accuracy. This tion and its normal derivative were integrated exactly over each
implies that for a large class of problems, where sharp gradients panel--our previous work used quadrature [36], but exact inte-
in plasma properties develop in localized regions, it may be gration was found to mitigate the effect of the kernel singular-
ideal to think about a hybrid PIC-BIT algorithm. In such an ities in evaluating particle-boundary interactions. The treecode
algorithm, BIT would only be applied to small patches of the used a fourth-order Taylor expansion and the MAC parameter
simulation domain in order to correct the PIC calculation, was 0 = 0.1.

Planar Optics: Ion thrusters for spacecraft propulsion op- Fig. 16 shows a snapshot of the computed particle locations.
crate by electrostatically accelerating ions through a set of ion Also shown are the leaf clusters in the treccode, assuming a
optics. The optics consist of a screen grid and an accelerator maximum of 200 particles per leaf. The clusters conform to the
grid, each of which typically has many thousands of hexago- particle locations; no effort is expended on empty regions, re-
nally-arranged apertures. Ion optics simulations usually focus gions with low particle density have fewer clusters, and regions
on a single aperture and the immediate vicinity upstream and with high particle density have many clusters. A detailed anal-
downstream. Fig. 15 shows the geometry and boundary condi- ysis of the results is in preparation.
tions in the present example. Ions are introduced at the upstream Cylindrical Optics: In this case, BIT is applied to a more
edge of the domain at a discharge potential of about 2000 V. The complex problem than in the previous test cases. One problem
screen grid has a potential 25 V below the discharge potential that arises is the inclusion of an electron population for the direct
and the accelerator grid has a negative potential on the order summation and BIT. The PIC potential solver models a Boltz-
of -200 V. Ions are accelerated electrostatically by the drop in mann electron fluid at the mesh nodes, but BIT has no mesh for
potential, providing thrust. Downstream of the optics, the beam such a simulation and there is no known Green's function for
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lhe fully nonlinear problem. The free-space Green's function 103  107

for the axisymmetric case is

10 .1 ,/ dO K ~~m ) (34) [%-%.. ..................... : " 0 '
I ___,9__ K(mn) 101

G(x,y=- (- - (34) /0
0 C

2 1 , : 1 0 3 •

where x, y have cylindrical coordinates (r,, z,), (rzu),L 2 = 0. 10° .
(r,, + rY) 2 + (Zxr - ZY ) 2 , rn = 4rJry/L 2, and K(m) is the com- 2
plete elliptic integral of the first kind. The present axisymmetric , 0 1

treecode is relatively inefficient compared to the planar version 101 B
due to the lack of a recurrence relation for the derivatives of _
the axisymmetric Green's function. As a result, in this example, . 10- u
the treecode CPU time is at least an order of magnitude greater
than the PIC CPU time. The treecode could have been made 10-3 A F)
more efficient by using a lookup table for the elliptic function . Avdage Elerice

evaluations or a different form of the Green's function [65]. The Average Eiatrc Fia
problem does not arise in three dimensions because an efficient 10-41 10-3

0.000 0.002 0.004 0.006 0.008
recurrence relation is known for that case [29]. Axial Position (m)

The simulation domain radius was 10-3 In, the upstream
length was 2 x 10-3 in, the downstream length was 4 X 10-3 o11, Fig. 17. Relative z force difference between PIC and direct summation.
the screen grid was 0.4 mm thick with a 1.6-mm-diameter aper-
ture, and the accel grid was 0.8 mm thick with a 1.0-mm-diam-
eter aperture. As for planar optics, the boundary was modeled
as a combination of single and double layer potentials. The E B
boundary matrix A was constructed using an eight point
Gaussian quadrature rule. To control errors at sharp corners, a -VEXB-• Electrons z
Chebyshev panel spacing was used along boundary segments.
The total number of panels was 512. The upstream domain L
boundary potential was 1800 V, the screen grid was 1775 V, r-
the accel grid was -210 V, the downstream boundary was
22 V (all Dirichlet), and the other upper boundaries were
homogeneous Neumann. The smoothing parameter value was Fig. 18. Sketch of a Penning-Malmberg trap for confining an electron plasnia.
6 = 4 x 10-5 m. The treecode used fourth order Taylor
expansions, the MAC parameter was 0 = 0.16, and the leaves magnetic field strength was B - 1 T. Under these conditions,
had no more than eight particles per lowest level cluster, the time required for an electron to complete one bounce is

The comparison done here is between direct summation and much smaller than the characteristic E x B time scale. In this
PIC in order to provide a baseline comparison. Because the dif- case, the plasma is well described by a 2-D particle model in
ferences are fairly large in this case, a comparison using the which the electrons behave like line charges being convected
treccode would appear exactly the same due to its closeness to with velocity v = E x B/B 2 [68]. The system has been
direct summation. The direct summation comparison to PIC im- investigated experimentally and computationally, and many
parts all the relevant information, interesting phenomena were revealed including metastable

Fig. 17 plots the average relative difference in the particle crystalline states and complex dynamics [66], [67].
force between PIC and direct summation and the average elec- In our simulations, the applied magnetic field B is a specified
tric field across the domain. In the central region, the imposed constant and the electric field E is computed using BIT. In addi-
electric field dominates, giving a small relative difference. In the tion, the particle insertion scheme discussed in Section lI-B was
neutral regions of the domain upstream and downstream of the used to maintain resolution of the electron density. The insertion
ion optics, the electric field is small on average. PIC computes criterion compares the distance between hypothetical particles
very small forces in these regions, while direct summation still inserted using linear interpolation and cubic interpolation. If the
sees large interparticle forces. The average PIC force magnitude distance is greater than 5% of the initial particle spacing, a new
in the upstream region is on the order of 10-17 N, while the av- particle is inserted. The time integration method used is RK4.
erage direct sum force is approximately 10-16 N. A detailed The BIT field evaluation used an eighth order Taylor expansion
analysis of the results is in preparation. and the MAC parameter was 0 = 0.5. The Dirichlet boundary

Penning-Malmberg Trap.: A Penning-Malmberg trap is a condition on the cylinder wall was imposed using a single layer
grounded conducting cylinder used for confining an electron potential and the terms in the boundary matrix A were evaluated
plasma [66], [67]. The electrons are confined by applying a using eight-point Gaussian quadrature. Refinement tests were
magnetic field along the cylinder axis and holding the cylinder carried out in space and time.
end caps at constant voltage, so that the electrons bounce Here, we present a simulation of wave breaking in which the
back and forth along the magnetic field lines (see Fig. 18). cylinder parameters, size, magnetic field strength, initial deec-
For example in [67], the end caps were held at 50 V and the tron density profile, etc., were chosen as in the experiment 169].
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* a) a)

b) ib)

Fig. 19. Initial condition for wave breaking simulation. (a) Particle curves. (b) Fig. 20. Wave breaking. one rotation. (a) Particle curves. (b) Electron density.
Electron density. The small dark gray patch is four times as dense as the large Color indicates density (red is high: blue is low). The small dark gray patch is
background patch, four times as dense as the large background patch.

a)
A small dot of radius is 0.1035 cm and high density nlot =
1.0 x 107 cm-3 is superimposed on a large background electron
disk of radius 0.8 cm and low density 71.,isk = 1.8 x 106 cm- 3 .
Fig. 19 shows the initial condition with (a) curves on which the
particles were placed, and (b) electron density mapped onto a
mesh. The dot rotates about the center of the disk; Fig. 20 showsthe solution after one rotation and Fig. 21 shows the solution /!/

after four rotations. As the dot rotates, it entrains material from ,
the disk and causes a wave to form on the disk boundary. The
results are in excellent agreement with experiment [69]. Note
that the filamentation in Fig. 21(a) gives rise to a diffuse region
when mapped to a mesh, as in Fig. 21(b). Since the experimental
results are obtained by crashing the electrons onto a cathode
ray tube and capturing the image with a charge-coupled device b)
camera, the resulting spatial blurring may be similar to that of
mapping the particles onto a mesh. Hence, the diffuse region
seen in the experiment may be due to filamentation beyond the
experimental resolution. A detailed analysis of the results is in
preparation [41].

IV. FUTURE WORK

Our short term goal is to apply BIT and particle insertion to
simulate the warm two-stream instability. In addition, we are ex-
tending our 2-D field solvers to three dimensions, as well as op-
timizing the treecode approach for solving the linear system as- Fig. 21. Wave breaking, four rotations. (a) Particle curves. (b) Electron

sociated with the homogeneous solution. In the future, we plan density. Color indicates density (red is high; blue is low). The small dark gray

to incorporate a mesh-free DSMC code currently under develop- patch is four times as dense as the large background patch.

ment to permit the mesh-free simulation of collisional plasmas.
We plan to begin the development of a nonstatistical collision tional goal is to incorporate cluster-cluster approximations sim-
operator which will accommodate particle insertion. An addi- ilar in spirit to the fast multipole method [27]. Finally, we plan



CHRISTLIEB et al.: GRID-FREE PLASMA SIMULATION TECHNIQUES 163

110 investigate whether this grid-free approach can be extended [211 K. Nanbu and S. Yonemura, "Weighted particle in cell Coulomb colli-

to problems with time-varying magnetic fields. sion simulations based on the theory of a cumulative scattering angle."
J. Comput. Phys., vol. 145, pp. 639-654, 1998.

[22] M. 1. Berger and J. Oliger, "Adaptive mesh refinement for hyperbolic
V. CONCLUSION partial differential equations," J. Comput. Phys., vol. 53, pp. 484-512,

1984.
1231 M. J. Berger and A. Jameson, "Automatic adaptive grid refinement forWe have applied a grid-free boundary integral/treecode the Euler equations," AIAA J., vol. 23, pp. 561-568, 1985.

(BIT) field solver to several bounded plasma problems and ob- [241 M. J. Berger and P. Colella, "Local adaptive mesh refinement for shock

tained comparable or better results than traditional mesh-based hydrodynamics," J. Comput. Phys., vol. 82, pp. 64-84, 1989.

methods. We demonstrated that BIT exhibits comparable [25] J. L. Vay. P. Colella, P. McCorquodale, B. Van Straalen, A. Friedman,
and D. P. Grote, "Mesh refinement for particle-in-cell plasma simula-

timing for a given accuracy and is capable of handling com- tions: Applications to and benefits for heavy ion fusion," Laser Particle
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